
Improving GPU Multi-tenancy with
Page Walk Stealing

B. Pratheek∗ Neha Jawalkar∗ Arkaprava Basu
Department of Computer Science and Automation

Indian Institute of Science
{pratheekb, jawalkarp, arkapravab}@iisc.ac.in

Abstract—GPU (Graphics Processing Unit) architecture has
evolved to accelerate parts of a single application at a time.
Consequently, several aspects of its architecture, particularly
the virtual memory, have embraced a shared-mostly design.
This implicitly assumes that a single application and, thus, one
address space is resident in the GPU at a time. However, recent
trends, e.g., deployment of GPUs in the cloud, necessitate efficient
multi-tenancy. Multi-tenancy is needed for sharing the physical
resources of a large server-class GPU across multiple concurrent
tenants (applications) for resource consolidation while ensuring
fairness among the tenants.

We first quantify how different components of GPU’s virtual
memory can impede multi-tenancy. We show that shared page
walkers are a key bottleneck under multi-tenancy. We, therefore,
propose dynamic page walk stealing that enables soft partitioning
of the shared pool of walkers – reducing destructive interference
between the tenants while also aggregating resources where
possible. Over today’s design, we improve throughput by 37%,
and weighted IPC by 15%, on average, over 45 workloads.

Index Terms—graphics processing units, virtual memory, ad-
dress translation, page table walkers, multi-programming

I. INTRODUCTION

GPUs are key to accelerate a broad range of application do-

mains with abundant data-level parallelism [33]. Traditionally,

a GPU is tasked to accelerate portions of a single application

at a time. This “one-application-at-a-time” usage model is

reflected in the design of GPU’s virtual memory. Typically, the

entire GPU shares the last level TLB (here, L2) and a shared

pool of page table walkers [45], [42], [43]. Shared TLBs and

walkers are beneficial if the entire GPU executes kernel(s)

from a single application (i.e., single address space) at a time

– TLB entries and page walk requests can be shared across

concurrent computations. This reduces the number of page

table walks and, thus, the overheads of address translation.

In recent times, however, multi-tenancy has become a desir-

able feature on server-class GPUs. We define multi-tenancy as

multiple applications concurrently executing on a shared GPU

hardware as co-running tenants. As GPUs make their way into

the cloud infrastructure [34], [21], [6] the ability to efficiently

share a GPU across multiple concurrent tenants becomes a

necessity. The sharing of resources is fundamental to cloud’s

economic model. Further, as GPU hardware resources continue

to grow, kernel(s) from a single application may not be enough

to keep an entire GPU busy [28], [30]. Multi-tenancy is thus

*Authors contributed equally.

becoming a desirable feature to ensure better utilization even

outside of the cloud.

GPU vendors are evolving their software and hardware

stack for catering to the needs of multi-tenancy. A good

example is NVIDIA’s Multi-process Service (MPS). Volta
GPU architecture onward, MPS enables concurrent execution

of kernels from different virtual address spaces in a GPU.

This year, NVIDIA announced Multi-Instance GPU (MIG)

technology in A100 GPUs [37]. MIG leverages SR-IOV [25]

to expose multiple instances of a shared GPU to different

tenants. It statically partitions compute, and memory resources

among the instances for performance isolation [37]. AMD’s

MxGPU technology can similarly expose multiple instances

of a GPU [1]. These evolving technologies demonstrate the

growing need for better multi-tenancy support in GPUs.

Unfortunately, several key design choices in a typical GPU

architecture implicitly assume the “one-application-at-a-time”

usage model that runs contrary to the spirit of multi-tenancy.

We focus on the virtual memory since the foremost require-

ment of multi-tenancy is the ability to concurrently service

requests from multiple address spaces. However, the shared

L2 TLB and the shared page walkers can induce uncontrolled

interference across tenants resulting in significant performance

loss. While static partitioning of resources can control inter-

ference it leads to severe resource under-utilization.

We quantify how various shared components of GPU’s

virtual memory impede multi-tenancy. While recent research

has focused on the more obvious source of interference among

tenants – the shared L2 TLB [5] – we find that the shared

page walk subsystem is also a key source of performance

degradation under multi-tenancy.

Independent page walk requests from co-running tenants

can get interleaved with each other while they queue up at

the walkers. Consequently, a tenant experiences latency due

to page walks of another tenant(s). The impact of interleaving

is particularly severe when one of the tenants generates page

walks more frequently than the other. The former, in such

cases, tends to keep all walkers busy with its requests for

the most part. Consequently, when a walk request from other

tenants arrives, it experiences high queuing latency as it

gets queued behind many requests of the page-walk-intensive

tenant (Section IV). This uncontrolled interference leads to

significant loss of throughput. It can impair fairness too, where

one of the tenants suffers disproportionate performance loss.

626

2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

2378-203X/21/$31.00 ©2021 IEEE
DOI 10.1109/HPCA51647.2021.00059

We, thus, design a multi-tenancy aware page walk system

that limits uncontrolled interference to improve throughput and

provides a way to tradeoff throughput with fairness.

We introduce the idea of dynamic page (table) walk stealing
(DWS) – partially inspired by the work-stealing mechanisms in

parallel language runtimes like Clik, TBB, etc. [14], [24]. We

first partition the shared pool of walkers among the tenants.

A walker in a partition serves page walk requests only from a

given tenant (a.k.a., owner). This alleviates the interleaving of

walk requests but leads to walker under-utilization and more

unfairness. Every tenant does not generate walk requests at the

same rate, and thus when walks from one tenant are queued up,

the walkers owned by another tenant may go unused, leading

to severe degradation in throughput.

To avoid walker under-utilization, DWS enables a page

walker to steal a walk (work) from another walker owned by a

different tenant. A walker can steal a walk only if no page walk

request is pending from its owner tenant. Stealing improves

utilization while strictly limiting interleaving of walks from co-

running tenants. A walk from a tenant may have to wait for at
most one walk from another tenant and on average, is a small

fraction compared to tens in current designs (Section VII).

A subtle consequence of DWS’s controlled sharing of walk-

ers is a similarly controlled sharing of L2 TLB capacity.

This is because allocations in the TLB by a tenant are

directly proportional to the number of walks completed by

it. Consequently, a larger (smaller) share of walkers leads to

a larger (smaller) share of TLB capacity. Ultimately, DWS
improves throughput by 55%, over the baseline for a subset

of 32 (out of 45) virtual memory intensive workloads.

While DWS significantly improves throughput, we find

that a better balance between performance and fairness is

possible by judiciously loosening the condition for stealing.

For example, DWS can be unfair to a tenant that requires

servicing many page walks if it executes alongside another

tenant that generates walk requests at a relatively low but

steady rate. Stealing may not happen because other tenant’s

walkers, although less loaded, may not be free often enough.

An extension to DWS, called DWS++, thus, allows stealing if

there is a vast difference in the walks queued from each tenant,

even if there are non-zero number of walks pending. We

observe that a page walk’s impact on a tenant’s performance

varies based on its intensity of page walk generation. If a

tenant generates many walks then quickly servicing one of

its walks barely improves its performance since the queuing

latency is already high. In contrast, if a tenant generates a

moderate number of walks, then delaying its walks may cause

a large slowdown. DWS++ thus, measures the rate of walk gen-

eration from co-running tenants at runtime and uses it, besides

the difference in the number of walks queued by tenants, to

decide whether to allow stealing. Importantly, DWS++ allows

one to fine tune the balance between throughput and fairness

by adjusting the aggressiveness of stealing.

In summary, we make the following contributions.

• We demonstrate that the uncontrolled sharing of page

table walkers is a key reason behind the performance

Fig. 1: Baseline GPU design

degradation under multi-tenancy in GPUs.

• We propose the idea of page walk stealing to limit

uncontrolled interference among tenants for page walkers

to significantly improve performance.

• We extend this to enable a trade-off between throughput

and fairness by controlling when a walker steals.

II. BACKGROUND

Figure 1 depicts a typical GPU architecture. Streaming

Multiprocessors (SMs) are GPU’s basic computing blocks.

There could be up to 64-80 SMs in a GPU. Each SM contains

multiple Single-Instruction-Multiple-Data (SIMD) units, each

with multiple lanes of execution (e.g., 16− 32). A SIMD unit

executes a single instruction across all lanes in parallel. Each

SM has a private L1 cache and a scratchpad that are shared

across its SIMD units. When several data elements requested

by a SIMD memory instruction falls on the same cache line,

a hardware coalescer combines requests into single access to

gain efficiency. The L1 cache is looked up after coalescing

requests. All SMs share a larger L2 cache. The L2 cache

is heavily banked, and each bank is typically connected to

a DRAM channel. GPU’s onboard memory (e.g., GDDR5/6

or HBM2) supports large bandwidth to service the needs of

thousands of concurrent threads.

GPU virtual memory: Each SM has a private L1 TLB. In

GPUs, often, memory accesses from a single SIMD memory

instruction (load/store) falls on a single page (e.g., 4KB).

These accesses are coalesced to a single address translation

request before looking up the L1 TLB. On a L1 miss, a larger

L2 TLB is looked up. Unlike L1 TLBs, the L2 TLB is shared

by all SMs. On a L2 TLB miss, the translation request is

sent downstream to the page walk system. The page walk

system is shared by all SMs and is responsible for looking up

the in-memory multi-level page table (cacheable). It houses

multiple page table walkers (PTWs) that can concurrently

service several walk requests (e.g., 8-16) [42], [43], [45].

When a new walk request arrives, all walkers could be busy

servicing earlier requests. The request will then wait in a

queue, called the page walk queue (PW queue), in the order it

arrived at the page walk system [43]. When a walker finishes

627

a walk, it returns the translation to the TLB and then picks

the next request to service from the head of the PW queue.

While TLB hits are fast, page table walks can take hundreds

of cycles. A walk requires up to four memory access to lookup

a typical four-level page table. Therefore the page walk cache

(PW cache) stores recently used partial translations [8], [43].

A partial translation helps skip accesses to upper levels of a

page table’s tree structure. Before starting the walk, the PW
cache is looked up first for the longest prefix match on the

virtual page number to be translated. On a hit, the number of

required memory accesses reduces to 1-3, depending upon the

length of the prefix match [8], [43].

Multi-tenancy in GPUs: While traditional GPU architecture

is designed to serve memory requests from one tenant (applica-

tion), multi-tenancy is becoming increasingly important. GPUs

have made inroads into the public cloud infrastructures [21],

[6] where resource consolidation and thus, efficient multi-

tenancy is a necessity. GPUs with 64 SMs are commercially

available and those with 128 SMs are around the corner [2],

[46]. Keeping an entire GPU busy may not always be possible

for a single tenant. Multi-tenancy is also the underpinning of

effective virtualization where a GPU may need to be shared

across multiple virtual machines.

It is possible to time-multiplex a GPU amongst tenants

(temporal multi-tenancy) via preemption and context switching

among tenants. However, temporal multi-tenancy does not

necessarily address the issue of resource under-utilization

[28], [30]. Due to a large number of threads and registers,

context of a GPU program is much larger than that of a

CPU program. Consequently, the overheads of preemption and

context switching could outweigh the benefits.

We thus focus on spatial multi-tenancy where multiple ten-

ants may concurrently execute on a shared GPU. Hereafter, by

multi-tenancy, we refer to spatial multi-tenancy. An example

of such a facility is NVIDIA’s Multi-Process Service or MPS.

With the Volta architecture onwards, MPS allows multiple

tenants (virtual address spaces) to execute concurrently on a

single GPU [35]. Subsets of SMs can be assigned to each

tenant, while the memory subsystem is dynamically shared.

A common theme among these forms of spatial multi-

tenancy is that while the SMs are partitioned among the

tenants, the on-chip memory resources, including TLBs and

caches, are dynamically shared and thus, may create uncon-

trolled contention. NVIDIA’s upcoming A100 GPU promises

to statically partition cache and memory bandwidth (though

silent on TLBs/PTWs) [37]. However, we quantitatively find

that static partitioning of virtual memory resources, such

as PTWs, could significantly lower overall throughput (Sec-

tion VII-D). In this work, we thus focus on how best to share

GPU virtual memory resources under multi-tenancy.

III. METHODOLOGY

Before we delve into the quantitative analysis of contention

in GPUs under multi-tenancy, we describe our methodology.

We simulate the baseline GPU configurations and enhance-

ments for DWS and DWS++ on the GPGPU-Sim simulator[7].

TABLE I: Baseline configuration

Shared multiprocessors 30 SMs, 1137 MHz, GTO scheduler
L1 TLB Private, 32 TLB entries, 12 MSHR entries
L2 TLB Shared, 1024 entries, 16 way set-associative
Page walkers Shared, 16 walkers, 192 entry walk queue
Page walk cache Shared across page walkers, 128 entries
L1 cache Private to each SM, 16KB per SM
L2 cache Shared, total 2MB, 16-way, 16 banks
Memory 16 channels, 345.6 MBps bandwidth

TABLE II: Workloads

Classification Benchmark Description

Light
(MPMI <25)

MM Matrix multiplication [44]
HS Temperature map of computer chips [15]
RAY Ray tracing [41]
FFT Fast Fourier Transform [44]

Medium
(25 <MPMI <80)

LPS Laplace solver for 3D grids [27]
JPEG JPEG encoding and decoding [27]
LIB Computing LIBOR swaption portfolio [27]
SRAD Speckle reducing an-isotropic diffusion [15]
3DS Updates elements of array as per pattern [27]

Heavy
(MPMI >80)

BLK Equation solver for market analysis. [27]
QTC Clustering with cluster size threshold [17]
SAD Sum of absolute differences [44]
GUPS Multi-threaded, random access [27]

Specifically, we enhanced the MASK framework [5] that

is derived from the MAFIA framework based off GPGPU-

Sim [27]. Table I shows the baseline configuration. The

simulator supports multi-tenancy and a comprehensive virtual

memory system, including parallel page table walkers and

a page walk cache. For most of this paper, we simulate

two concurrent tenants without loss of generality. We further

extend this to 3-4 tenants to demonstrate how the proposed

design scales to a larger number of tenants in Section VII-F.

Applications running as co-tenants do not necessarily have

the same execution length (time). We thus continue simulation

until both tenants have completed execution at least once.

If one of the tenants finishes early then we relaunch the

same application to ensure that the other tenant(s) continues

to experience contention. We measure the IPC and other

statistics for each tenant over all its completed executions.

This follows the standard methodology employed in simulating

multi-programmed workloads on CPUs [48], [26]

Workloads: Table II shows a set of applications drawn from

the MAFIA framework [27] ordered by their TLB miss in-

tensity. We quantify the TLB miss/page walk intensity of

an application by its number of L2 TLB misses per million

instructions (L2 TLB MPMI). An application is classified as

Light (L), Medium (M), or Heavy (H) based on its L2 TLB

MPMI. The workloads are then constructed by running these

applications in pairs as co-running tenants.

The workloads (i.e., application/tenant pairs) can be classi-

fied as LL, ML, MM, HL, HM, or HH based on the classifica-

tion of its constituents. There could be 78 such workloads.

However, presenting individual data points for all those is

neither possible nor necessary. Instead, we focus on 45 of them

with representations from all the above-mentioned six possible

workload classes. However, LL, ML, and MM workloads are

not interesting since they are mostly agnostic to the virtual

memory subsystem (quantified in the next section). Therefore,

628

0.5
0.75

1
1.25

1.5
1.75

2
2.25

Th
ro

ug
hp

ut
 (T

ot
al

 IP
C) Baseline S-TLB S-(TLB+PTW)

LL ML MM HL HM HH

2.51 3.962.75 5.83 2.51 3.38 3.78 2.66 2.81 3.80

Fig. 2: Total IPC for baseline, separate TLBs and separate walkers. Normalized to baseline

0.4

0.8

1.2

1.6

2

W
ei

gh
te

d
IP

C

Baseline S-TLB S-(TLB+PTW)

Fig. 3: Weighted IPC for baseline, separate TLBs and separate walkers

while we ensure that workloads from all six classes are

represented, we focus more on the other three classes.

We observed that BLK, which has good cache locality, suf-

fers many TLB misses. We find that this happens because the

warp scheduler often schedules warps with different working

sets together on an SM. This causes the TLB to thrash as it

fails to keep disjoint working sets at the same time.

IV. QUANTITATIVE ANALYSIS OF GPU MULTI-TENANCY

A GPU’s virtual memory (Figure 1) has two key sources of

contention under multi-tenancy – the shared L2 TLB and the

page walk system. These shared resources are beneficial when

a GPU executes kernel(s) from one application (and thus, the

same virtual address space) at a time. L2 TLB entries can be

shared across SMs, and a page walk request from one SM may

act as a prefetch for another. However, under multi-tenancy,

tenants contend for the limited L2 TLB capacity and the shared

pool of page walkers. Contention for the walkers also leads to

contention in page walk caches.

To quantify performance headrooms from relieving con-

tention at aforementioned shared virtual memory resources,

we simulate three different configurations – 1© Baseline, 2©
separate L2 TLB for each tenant (S-TLB), and 3© separate L2

TLB and page table walkers for each tenant (S-(TLB+PTW)).
Baseline simulates the configuration in Table I.

In the S-TLB configuration, each tenant gets an exclusive

copy of the L2 TLB (i.e., aggregate L2 TLB capacity doubles

assuming two tenants). However, they still share the page walk

subsystem. The performance difference between Baseline and

S-TLB quantifies the performance that could be gained if the

tenants did not interfere in the TLB.

Under S-(TLB+PTW), each tenant gets exclusive copies

of both the L2 TLB and page table walkers (i.e., L2 TLB

capacity and the number of walkers doubles). The performance

difference between S-TLB and S-(TLB+PTW) quantifies the

performance that could be further gained if we could also

relieve contention in the page walkers. Note that only doubling

the number of walkers is often useless and can distort analysis

since it can cause thrashing in the TLB. A larger number of

walkers allows walks to finish and fill the TLB at a higher rate,

potentially thrashing the L2 TLB by evicting useful entries.
Figure 2 shows the throughput (normalized to baseline) of

different workloads under the three configurations. We define

the throughput as the total IPC (t_IPCC), which, for a given

combination (C) of n tenants is
∑n

i=1 IPCC[i]. For a cloud

provider, throughput is indicative of the overall utilization of

a GPU, and thus, the value that physical resource provides.
Each workload has three bars in the cluster representing the

three configurations described earlier. Further, workloads are

separated into groups based on the class a workload belongs

to (marked on the graph). We observe that the throughput of

different classes of workloads improves with S-TLB and S-
(TLB+PTW) by different amounts, as expected. While there

is little scope for performance improvement for LL, ML, MM
workloads, there is significant scope for HL, HM and HH ones.

We observe that with S-(TLB+PTW), throughput increases

by a significant margin over S-TLB. This increase is often

higher than the throughput increase with S-TLB over the

baseline. For example, the throughput over baseline improves

by around 26%, on average, when the TLB is not shared

(S-TLB). The throughput improves by a further 31% over

S-TLB, if contention in the page walkers is avoided too (S-
(TLB+PTW)). If we consider only the 32 workloads in the HL,

HM and HH category, then throughput improves by an average

of 38% with S-TLB, while S-(TLB+PTW) further improves it

by 46%. Therefore, relieving contention in the page table walk

system is key to efficient multi-tenancy.
While throughput indicates utilization, it does not reflect

the relative slowdowns that tenants experience due to multi-

tenancy. In a public cloud, relative slowdown, a.k.a., fairness

amongst tenants, is important too. We use the weighted IPC,

a standard metric to capture the IPC weighed by the relative

slowdowns. The weighted IPC (w IPCC) for a given workload

(C) with n concurrent tenants is calculated as
∑n

i=1
IPCC [i]
IPCSA[i]

.

IPCSA[i] stands for the stand-alone IPC of a given tenant

i in the combination. The stand-alone IPC is measured by

executing that tenant alone on the baseline. A higher weighed

IPC signifies that tenants experience relatively small perfor-

629

TABLE III: Interleaving of page walks

Workloads Tenant 1 Tenant 2 Average

LL
HS.MM 0.01 0.012 0.011
FFT.HS 0.01 0.032 0.021
Arith. mean 0.017 0.043 0.03

ML
3DS.FFT 1.922 5.203 3.563
LIB.MM 0.367 0.447 0.407
Arith. mean 0.907 2.342 1.625

MM
3DS.SRAD 2.789 6.738 4.763
LIB.JPEG 0.16 0.249 0.204
Arith. mean 1.293 3.537 2.415

HL
BLK.HS 4.35 36.937 20.643
GUPS.MM 22.843 109.697 66.27
Arith. mean 12.236 72.346 42.291

HM
BLK.3DS 28.769 86.203 57.486
GUPS.JPEG 7.233 131.907 69.57
Arith. mean 15.282 72.761 44.021

HH
GUPS.SAD 72.539 77.208 74.874
QTC.BLK 56.59 84.1 70.345
Arith. mean 58.434 85.128 71.781

mance degradation under multi-tenancy. The possible values

of weighted IPC range from zero to n.

Figure 3 shows the corresponding weighted IPCs. A sig-

nificant improvement in weighted IPC could be gained by

alleviating contention in the page walkers, more so than the

shared TLB. For example, the weighted IPC increased by a

further 16% when separate walkers were added on top of

separate TLB. As in the previous figure, we observe that

HL, HM and HH workloads show significant potential for

improvement.

A. Interleaving of page walk requests

On further analysis of contention at the page walkers, we

notice that unrelated walk requests from co-running tenants

get interleaved while they queue up for servicing. Interleaving

causes a tenant to wait for unrelated walk requests from

another tenant, artificially increasing the walk latency. To

quantify interleaving, we measured the average number of

page walks of the other tenant that a walk request typically

waits for. A higher number indicates larger interleaving.

Table III shows the measurements. Due to space constraints,

we present only the average for each class of workloads and

those of two randomly selected workloads in the class. The

table has three data columns – the first column shows the

average number of walks from the second tenant that a walk

from the first tenant waits for. The second column shows the

same for the walks from the second tenant. The last column

shows the arithmetic mean of the two.

We make two observations. First, all classes of workloads,

except LL, show a significant number of interleaved page

walk requests (e.g., 42, on average, for HL workloads). More

interleaving is observed for workloads with more page walk

intensity. Second, one of the tenants typically experiences

relatively more interleaving than the other within a given

workload. This happens due to the relative difference in the

page walk generation rate. When a walk request from the

tenant that generates requests relatively infrequently arrives in

the page walk queue, it is likely to get queued behind several

other requests from the co-running tenant(s).

Does increasing TLB size and PTWs solve the problem?
If there were unlimited hardware resources, there would never

be any resource contention or interference. However, to extract

the most out of the available resources and to ensure fairness,

it is essential to avoid uncontrolled interference – something

that DWS and DWS++ aim for. We experimented with doubling

the TLB size and number of walkers in the baseline (2048-

entry TLB, 32 PTWs) and found that it is around 8% slower

than S-(TLB+PTW), which has the same resources but does

not suffer from interference. This indicates that even with

a large TLB and many PTWs, but with a relatively limited

memory footprint of simulated workloads, interference is a key

performance limiter. Section VII-E provides further evidence

of the usefulness of limiting interference by demonstrating

improvements with DWS for larger TLBs and more walkers.

Further, increasing only the number of PTWs can lead to

thrashing in L2 TLB, degrading performance. Increasing TLB

size increases area, energy cost along with the lookup latency.

Summary: 1© Contention in page walkers causes per-

formance degradation in GPUs under multi-tenancy.
2© This contention often manifests in the interleaving

of unrelated walk requests from co-running tenants.

V. DYNAMIC PAGE WALK STEALING

Our goal is to make GPU’s virtual memory perform well

under multi-tenancy. We aim to improve throughput while

limiting unfairness among tenants. Driven by the analysis in

previous section, we focus on the contention in the page walk

system to achieve this goal. While contention for a shared

resource is unavoidable in a resource-constrained environment,

limiting the interleaving of requests can reduce its ill-effects.

A naive way to alleviate interleaving would be to partition

the page walkers equally amongst tenants. A subset of walkers

would service page walks from only a designated tenant (called

the owner). However, this could lead to under-utilization of

page walkers, and load imbalance under the common scenario

when all tenants do not generate page walk requests at a

similar rate. For example, if a tenant does not generate many

page walks, then the set of walkers assigned to it may remain

partially idle. However, if the other tenant is performance-

sensitive to page walk latency, then it could have benefited

from the idle walkers. Therefore, strict partitioning of walker

lowers throughput (measured in Section VII).

To avoid under-utilization of page walkers while also lim-

iting the interleaving of walks, we propose dynamic walk
stealing (DWS). DWS starts by equally partitioning walkers

among tenants. However, when a page walker finishes a walk,

but no other walk request is pending from its owner tenant, the

walker steals a pending (waiting) walk request from a different

tenant (if one exists) for servicing. This simple strategy avoids

underutilization of walkers and limits interleaving too. A page

walk from a tenant may need to wait for at most one walk

request from another tenant. Consequently, DWS strictly limits
potential increase in page walk latency due to interleaving of

walks from independent tenants by design.

630

DWS also has a secondary positive effect on the shared

TLB. Since TLB entries are ultimately populated by results of

walks, controlling the share of walkers among the tenants leads

to similarly controlled sharing of L2 TLB entries. This helps

limit the (potential) uncontrolled thrashing of one tenant’s TLB

entries by another (quantified in Section VII).

While DWS improves throughput by more than 37% on

average (Section VII) over all 45 workloads, we find that a

better balance between performance (throughput) and fairness

is possible by loosening the condition for stealing. For exam-

ple, DWS can be unfair to a tenant that generates many walk

requests if it runs alongside a tenant that generates a steady

but relatively infrequent stream of requests. It can introduce a

large imbalance in the page walk queuing latencies across the

tenants since a walker steals only if its owner has no pending

walk. The imbalance in queuing can lead to a disproportionate

slowdown experienced by one of tenants (i.e., unfairness).

DWS++, an enhancement to DWS, attempts to address this

imbalance by allowing a walker to steal if there is a significant

difference (above a threshold) in the number of walks queued

by tenants. Stealing is allowed even when there are walks

pending from the owner of a walker. Unfortunately, this re-

introduces uncontrolled interleaving of walks from indepen-

dent tenants. Therefore, DWS++ allows stealing only if there

is a small number (below a threshold) of walks pending from

the owner and ensures a walker does not continuously steal.

We further make a subtle observation that the impact of

a single page walk on an application’s (tenant) performance

varies widely. Servicing a walk early from a tenant that

generates many walks may barely speedup a tenant since

the queuing delay is already high. In contrast, a tenant that

generates a relatively moderate number of walks may slow

down by a bigger margin if even a few of its walks are delayed.

Therefore, it is important to consider the relative frequency of

page walks from the tenants in allowing stealing.

DWS++, thus, allows a walker to steal more aggressively

if the page walk generation rates of the tenants are similar
(within a range). It makes it harder for a walker to steal a walk

if the other tenant(s) is generating walks at a much higher rate

than its owner. This avoids a scenario when one tenant speeds

up little, but the other slows down significantly.

Further, DWS++ parameterizes the aggressiveness of steal-

ing. By controlling the aggressiveness of stealing it is possible

to strike different balances between throughput and fairness.

This feature is useful in prioritizing fairness and QoS over

performance based on the specific deployment requirement.

VI. DESIGN AND IMPLEMENTATION

We here detail an implementation of DWS and DWS++
and discuss necessary hardware modifications. For ease of

exposition, we assume two tenants and 8 page table walkers,

but these are not fundamental to the design.

At a high level, implementing DWS and DWS++ requires

taking actions during two events – 1© when a new page walk

request arrives at the page walk system, and 2© when a walker

finishes a page walk. When a new walk request arrives, it is

Fig. 4: Hardware for DWS and DWS++

sent to one of the page table walkers owned by the requesting

tenant. When a walker becomes free after finishing a walk, it

needs to decide whether to steal a walk or service a pending

walk from its owner (if one exists). DWS steals only if no walk

is pending from its owner, but DWS++ may decide to steal

even otherwise. For this purpose, DWS++ needs to measure

the relative frequency of arrival of walks from tenants during

each epoch (defined in terms of a fixed number of walks) and

the relative occupancy of page walk queues for tenants. These

measurements are used in deciding whether to steal.

A. Hardware modifications
We describe the necessary hardware modifications before

detailing how they are used to implement DWS and DWS++.

First, each address translation request is tagged with a unique

tenant identifier (tenantID) for each actively running tenant.

This is a single bit for two tenants but is typically small for

a reasonable number of co-running tenants (e.g., 8). Next,

as shown in Figure 4, the monolithic page walk queue for

holding pending walk requests is divided equally into per-

walker queues. The total number of queue entries remains

unchanged. We also introduce an EPOCH counter (typically,

8 bits) that is incremented upon the arrival of a new walk

request. When the counter reaches a predefined value (i.e.,

epoch length, default 200), the end of an epoch is signaled,

and the counter itself is reset to zero.

We then add three small (10s of bits) direct-mapped struc-

tures (Figure 4). First, we keep an array of counters with

one entry for every walker (8 in the figure, 16 in the default

configuration). These counters track the number of free slots

available in the corresponding walker’s page walk request

queue. We call this a Free Walker Array (FWA). FWA is a

direct-mapped structure indexed by the page table walker ID

(4 bits for 16 walkers). FWA also contains one bit per walker

631

(is stolen), which is set when the walker steals a walk and

is reset whenever it services a walk from its owner (i.e., no

stealing). We will later detail how DWS++ uses this bit and

the epoch to control the aggressiveness of stealing.

Next, another direct-mapped table, called Tenant-to-Walker

Mapping (TWM), tracks the subset of walkers owned by a

tenant. It is indexed by tenantID (1-3 bits), and its entries

have a bitmap of length equal to the total number of walkers

(Figure 4). A bit in an entry’s bitmap is set if the corre-

sponding walker is owned by the given tenant. Each entry

further keeps two more counters. The counter PEND WALKS
tracks the number of walk requests currently pending from

the tenant. The counter ENQ EPOCH tracks the number of

walks that arrived from that tenant during the current epoch.

These counters help to estimate walk queuing and the relative

frequency of walks generation for each tenant.

The third direct-mapped table, called the walker-to-tenant

mapping table (WTM), is indexed by a page table walker’s ID

(4 bits for 16 walkers), and each entry contains the tenantID the

tenant that own the given walker. Besides, we keep a register

called DIFF THRES that is set dynamically to modulate the

aggressiveness of stealing in DWS++.

Hardware state overhead: The total state overhead of new

structures is only 192 bits. FWA contributes 80 bits, TWM
contributes 80 bits, and WTM 32 bits. This assumes the default

configuration with 16 page table walkers, two tenants, and a

total of 192 entries to hold pending page walk requests from

all tenants. For a larger number of tenants, the size of TWM
grows linearly while that of WTM grows logarithmically.

B. Operations of DWS and DWS++

We first describe the operation of DWS by discussing actions

taken upon the arrival of a new walk request, and when a walk

finishes. We then detail how DWS++ extends them.

Initialization: We equally partition walkers among the co-

running tenants and initialize the bitmap in TWM entries based

on the assignment of the walkers to the tenants. All entries

of the FWA array are initialized to the size of the individual

walker queues (default, 12 = (192 ÷ 16)). All counters are

initialized to zero.

Arrival of a new walk request: When a walk request arrives

at the page walk subsystem, it indexes into the TWM table

using the tenantID of the request (Step 1©). The bitmap in

the TWM entry identifies the subset of walkers owned by the

requesting tenant. It then looks up the corresponding counter

values in the FWA array and chooses a walker with the highest

value (Step 2©). This corresponds to the walker that is least

loaded. The walk request is then queued for the chosen walker,

where it may wait before being serviced (Step 3©). Finally,

the PEND_WALKS counter in the tenant’s TWM table entry is

incremented and the counter in the FWA table corresponding

to the chosen walker is decremented (Step 4©).

Page walk completion: When a page table walker completes

a walk, it first looks up its walk queue. If the queue is not

empty, then it starts servicing the request at the head of the

queue (Step 1). Otherwise, it indexes into the WTM table with

its walker ID to identify its owner tenant. It then looks up the

corresponding PEND_WALKS counter by indexing into the TWM
table with the owner’s tenantID to check if there are pending

page walks from the owner (Step 2). If the counter is non-

zero it consults the TWM to determine the walkers belonging

to the owner. Thereafter, it consults the FWA entries of those

walkers to select one with requests in its queue. The walker

then starts servicing requests at the head of the chosen walker’s

queue. The FWA entry is updated accordingly (Step 3a).

In Step 2 above, if the value in PEND_WALKS was zero,

then DWS steals a walk of another tenant (Step 3b). It

chooses a target tenant to steal from by finding a TWM
entry with a non-zero value in its PEND_WALKS counter. The

tenantID of the chosen entry is the target. Steps similar to

those in 3a are then followed to choose one of the walkers

owned by the target and dequeue a walk (steal) from its queue.

Finally, the walker starts servicing the stolen walk (Step 4).

In all cases, the PEND_WALKS counter corresponding to the

tenant whose walk just finished is decremented. The entry in

the FWA corresponding to that walker is incremented if it does

not find a new request to service immediately.

Enhancement for DWS++: Under DWS++, a walker can steal

even when there are walk requests pending from its owner.

DWS++ first finds the difference in the number of walks

queued by each tenant, and normalizes that by the number of

entries in the page walk queue. Stealing is allowed if the nor-

malized difference is greater than a threshold (DIFF THRES).

DWS++ controls the aggressiveness of stealing by dynamically

changing the value of the threshold based on the relative fre-

quency of page walk generation rate of tenants. As discussed

earlier, DWS++ makes it harder (sets the threshold high) for a

tenant’s walker to steal if the other tenant is generating walk at

a much lower rate than the walker’s owner. DWS++ measures

page walk generation rates by counting the number of walks

from each tenant that arrive in an epoch (fixed number of

walks). It extends the actions of DWS as follows.

When a new page walk request arrives, the global EPOCH
counter and the per-tenant ENQ EPOCH in the TWM are

incremented. If the EPOCH counter reaches a predefined value

(here, 200), the end of an epoch is signaled. When an epoch

ends, the ratio of page walks enqueued by tenants is calculated

by dividing the larger of the per-tenant ENQ EPOCH values

by the smaller one. If the ratio is small (e.g., <= 1.5) then

DIFF THRES is set to a smaller value (e.g., 0.4) to allow

aggressive stealing. A larger ratio (e.g., >= 2) discourages

stealing by setting the DIFF THRES to a larger value (e.g.,

0.8). The epoch counters are reset at the end of an epoch.

When a walk finishes, the walker first looks up its queue

and checks if any walk is pending from the owner tenant as in

DWS. If there are walks pending, DWS++ checks if the walker

in consideration has just finished servicing a stolen walk by

checking the is stolen bit in the FWA table. If yes, it forbids

stealing. This ensures that the interleaving of walks remains

strictly bounded. If not, then it checks the occupancy of its own

queues. If the queue occupancy is greater than a pre-defined

threshold (QUEUE THRES), stealing is forbidden. This en-

632

sures that a walker doesn’t prioritize walks from another tenant

when it itself has many walks pending. If both conditions are

false, then DWS++ calculates the average occupancy of page

walk queues for each tenant. It does so by computing the

difference between the per-tenant PEND WALKS counters in

the TWM table and dividing it by the number of entries in the

page walk queues. If this ratio is higher than the DIFF THRES,

then the walker steals walk in the same way as in DWS.

In summary, DWS and DWS++ require little additional

hardware state (a couple of hundreds of bits), lookup of tiny

direct-mapped structures, and perform some logic operations.

Modifications are limited to the page walk system. We con-

servatively add latency for these operations in our evaluation.

However, since all walk requests require at least one DRAM

access and often suffer queuing delays, operations of DWS and

DWS++ does not add any noticeable delay in the critical path.

C. Discussion

Scalability of DWS and DWS++: Hitherto, we assumed only

two concurrent tenants. However, this is not fundamental to the

design. Our design scales up to a larger number of concurrent

tenants. However, the maximum needs to be fixed at design

time. This constraint is in line with commercial multi-tenancy

support. For example, NVIDIA’s MPS supports up to a small

number of concurrent tenants [35].

To support N concurrent tenants, the number of bits in

tenantID and the number of entries in the TWM should be

�log2 N�. Similarly, if the number of page table walkers is

increased, only a few tens of bits of additional state would

be required. There is barely any change in the operation of

DWS. If it decides to steal, it can steal from the tenant with

most pending walks or choose the target tenant randomly.

For DWS++, the threshold after each epoch and the relative

occupancy after each walk is calculated by first finding the

tenant that has the most pending walks. The rest remains

similar, whereby each tenant compares itself against that

maximum. In Section VII-F, we quantitatively show the impact

of scaling to more tenants.

Dynamically changing the number of tenants: We assumed

apriori knowledge of the number of tenants. This may not be

true in real execution. The number of tenants may increase

dynamically on the arrival of a new tenant. It may decrease if

a tenant finishes execution, but no other tenant is ready. Our

design can accommodate these scenarios.

When a new tenant arrives, the contents of the TWM and

WTM are updated. First, the allocation of walkers amongst

the tenants must be recalculated and the bitmaps in the TWM
entries are updated to reflect the new allocation. As before,

we can equally partition them across all tenants, but this is

not a necessity for DWS and DWS++. The entries of the WTM
should also be updated accordingly.

When a new page walk request arrives, it will observe the

updated contents of the TWM, and its requests will be routed to

walkers accordingly. When a walker finishes walking, it will

observe the updated contents of the WTM and TWM. There will

be no disruption in servicing page walks, and the system will

quickly converge to expected behavior.

If the number of tenants decreases, then we let the remaining

tenants use freed walkers. As in the above, the partitioning of

walkers across the tenants is re-calculated based on the new

number of tenants. The contents of the TWM and WTM are then

similarly updated to reflect altered execution conditions.

VII. EVALUATION

We evaluate DWS and DWS++ to analyse their impact on 1©
throughput, 2© fairness among the tenants, and 3© weighed

IPC. Methodology is detailed in Section III. We perform a

deep analysis of the impact of DWS and DWS++ on the inter-

leaving of page walks, the average page walk latency and the

frequency of walk stealing. We also quantitatively show how

page walk stealing can subtly impact the contents of the shared

TLB. We show how tuning DWS++’s parameters exposes a

knob to choose different balances between the throughput

and fairness. We measure the sensitivity to changing L2 TLB

capacity and the number of walkers. Finally, we compare

against relevant alternatives.

A. Performance and unfairness

Figure 5 shows the throughput (total IPC) normalized to the

baseline (Table I). Each workload has three bars. The first bar

represents baseline (always 1). The second bar represents total

IPC with DWS, while the third represents DWS++. Table IV

lists parameters for DWS++. It shows how the aggressiveness

of stealing is tapered by adjusting DIFF THRES with an

increasing ratio of page walk generation rate among the

tenants. Further, to avoid uncontrolled interleaving of walks,

consecutive stealing by a walker is disallowed, and stealing

happens only if no more than half of its queue entries are

occupied (QUEUE THRES). We empirically found that this

strikes a good balance between the throughput and fairness.

From Figure 5, we observe that DWS, on average (geometric

mean), across all 45 workloads, improves the total IPC by 37%

over the baseline. If we focus on the subset of 32 workloads

that are sensitive to virtual memory, then the improvement

is 55%, on average. For example, when executing SAD and

MM together or GUPS and JPEG together, the improvements

are 1.86× and 3.8×, respectively. We, however, observe that

for a couple of HH workloads, DWS is unhelpful. These

workloads thrash the 1024-entry L2 TLB and DWS increases

the thrashing by reducing page walk latency that, in turn,

increases the TLB fill rate. Later in Figure 12, we will show

that with a 2048-entry L2 TLB, DWS improves performance

for those workloads too.

The speedup with DWS++ reduces slightly compared to

DWS but still remains 34%, on average, over baseline. This

TABLE IV: Default DWS++ parameter values

Ratio of walk
queued (R)

R <=1.5
1.5 <R
<= 2

2 <R
<= 3

3 <R
<= 4

>4

DIFF THRES 0.4 0.6 0.8 0.9 No stealing

QUEUE THRES 0.51

633

0.5
0.75

1
1.25

1.5
1.75

2

Th
ro

ug
hp

ut
 (T

ot
al

 IP
C)

Baseline DWS DWS++

LL ML MM HL HM HH

2.49 2.48 2.58 2.18 5.22 5.20 2.22 3.04 2.79 3.07 2.49 3.81 3.80

Fig. 5: Throughput (total IPC) for Baseline, DWS, and DWS++. Normalized to the Baseline

0

0.2

0.4

0.6

0.8

1

Fa
irn

es
s

Baseline DWS DWS++

Fig. 6: Fairness in Baseline, DWS, and DWS++. Higher is better

0.5
0.75

1
1.25

1.5
1.75

2

W
ei

gh
te

d
IP

C

Baseline DWS DWS++

Fig. 7: Weighted IPC for Baseline, DWS, and DWS++

is expected; the purpose of DWS++ is to be able to moderate

unfairness. Fairness often comes at a cost to throughput.

Next, we studied the fairness in execution. The fairness

(fairnessC) for a given combination (C) of two concurrent

applications is calculated as fairnessc = min(SA,SB)
max(SA,SB) [18].

SA represents the slowdown experienced by the tenant A while

running along with tenant B and is calculated as
IPCC [A]
IPCSA[A] .

IPCSA[i] stands for the stand-alone IPC of a given tenant i. A

value 1 signifies a completely fair execution, while 0 signifies

a totally unfair execution. A higher value of this metric denotes

better fairness and is desirable.

Figure 6 shows the fairness experienced by workloads

under baseline, DWS and DWS++. DWS sometimes improves

fairness over baseline but not always. For example, fairness in

BLK.3DS drops with DWS. Even when executing stand-alone,

BLK has a high demand for page table walkers. When exe-

cuting alongside moderately page walk intensive 3DS, BLK is

hamstrung by lack of walkers, and its IPC drops significantly.

As walkers owned by 3DS are often not free, there is little

opportunity for stealing walks. In contrast, 3DS, which was

not getting enough page walkers in the baseline, experiences

a large increase in IPC under DWS. Consequently, the relative

slowdown experienced by each tenant increases, thereby hurt-

ing fairness. DWS++, as intended, improves fairness over DWS
especially where DWS hurts fairness. For example, DWS++
improves fairness for BLK.3DS as BLK gets a relatively larger

share of walkers due to aggressive stealing. Similarly DWS
hurts fairness for GUPS.3DS, SAD.QTC, SAD.3DS, BLK.LIB
and DWS++ moderates unfairness. On average over all work-

loads DWS++ provides best fairness.

Figure 7 shows the weighted IPC under the three configura-

tions as before. Here, we observe that weighted IPC increases

significantly under DWS compared to the baseline (on average,

15%). Improvement with DWS++ moderates slightly as it gives

up some of the gains in the total IPC for fairness.

B. Analyzing DWS and DWS++

Interleaving: In Section IV-A, we demonstrated that the

baseline suffers due to uncontrolled interleaving of page walk

requests from independent tenants. Thus, a key objective of

our design was to reduce interleaving. Table V presents the

average number of page walk requests from the other tenant

that a given walk request has to wait for (i.e., interleaving).

Compared to tens in the baseline, average interleaving drops

to a small fraction under both DWS and DWS++. Note that

634

TABLE V: Interleaving in Baseline, DWS, and DWS++

Workloads Baseline DWS DWS++

LL
HS.MM 0.011 0.003 0.003
FFT.HS 0.021 0.003 0.003
Arith. mean 0.03 0.005 0.005

ML
3DS.FFT 3.563 0.162 0.162
LIB.MM 0.407 0.032 0.032
Arith. mean 1.625 0.071 0.071

MM
3DS.SRAD 4.763 0.096 0.097
LIB.JPEG 0.204 0.014 0.013
Arith. mean 2.415 0.113 0.113

HL
BLK.HS 20.643 0.379 0.379
GUPS.MM 66.27 0.144 0.345
Arith. mean 42.291 0.225 0.295

HM
BLK.3DS 57.486 0.056 0.456
GUPS.JPEG 69.57 0.349 0.35
Arith. mean 44.021 0.164 0.31

HH
GUPS.SAD 74.874 0.005 0.029
QTC.BLK 70.345 0.019 0.084
Arith. mean 71.781 0.016 0.056

TABLE VI: Percentage of page walks serviced by stealing

Workloads DWS DWS++
Tenant 1 Tenant 2 Tenant 1 Tenant 2

LL
HS.MM 0.21 0.19 0.21 0.19
FFT.HS 1.01 0.03 1.01 0.03
Arith. mean 0.81 0.35 0.81 0.35

ML
3DS.FFT 20.98 2.28 20.98 2.28
LIB.MM 3.56 2.1 3.56 2.1
Arith. mean 15.85 1.8 15.85 1.8

MM
3DS.SRAD 9.04 3.53 10.02 2.43
LIB.JPEG 2.67 0.43 2.73 0.43
Arith. mean 13.08 2.05 13.34 1.77

HL
BLK.HS 39.62 0.59 39.62 0.59
GUPS.MM 29.1 0.15 31.22 0.31
Arith. mean 34.53 0.78 35.2 0.82

HM
BLK.3DS 14.89 0.07 22.12 0.13
GUPS.JPEG 40.55 0.04 40.73 0.05
Arith. mean 26.29 1.09 30.06 1.1

HH
GUPS.SAD 3.34 0 3.6 0.21
QTC.BLK 10.69 0.28 13.5 0.66
Arith. mean 7.16 0.8 8.68 1.29

0
1
2
3
4
5
6
7

LL ML MM HL HM HH All

Pa
ge

 w
al

k
la

te
nc

y Tenant 1 - Baseline DWS DWS++ Tenant 2 - Baseline DWS DWS++

Latency of a tenant
under standalone

Fig. 8: Average walk latencies of different workload classes

interleaving is least for LL and HH workloads under DWS and

DWS++. There is little need to steal for LL, and there is little

scope to steal for HH. As expected, DWS++ slightly increases

interleaving since it steals more aggressively.

Stealing: Table VI shows the percentage of walks from a

tenant that are stolen by walkers owned by the other tenant.

As expected, one of the tenants steals more than the other

based on their relative page walk generation rate. Also, stealing

happens more with DWS++ than with DWS.

Page walk latency: Under multi-tenancy, walk latency experi-

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Baseline DWS

TL
B

Sh
ar

e

PW
 S

ha
re

 PW Share of BLK PW Share of 3DS

 TLB Share of BLK TLB Share of 3DS

(a) 3DS and BLK

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Baseline DWS

TL
B

Sh
ar

e

PW
 S

ha
re

 PW Share of SAD PW Share of MM
 TLB Share of SAD TLB Share of MM

(b) SAD and MM

Fig. 9: Effect of page walker share on the L2 TLB content

enced by a tenant can increase due to resource contention and

interleaving of walks from co-running tenant(s). While some

amount of queuing in a resource-constrained environment is

unavoidable, partitioning and stealing of page walkers can

ameliorate artificial increase in the latency due to interleaving.

Figure 8 shows how average walk latency for constituent

tenants in workloads of different classes change under base-

line, DWS and DWS++. For each class of workloads, there is

one cluster of bars for one of the tenants in the workload. Each

bar represents the average (gmean) of normalized walk latency

experienced by the tenant under the given configuration. Walk

latency is normalized to the latency experienced by the tenant

when executing alone. Thus, the height of a bar depicts how

the walk latency experienced by a co-running tenant increased

due to multi-tenancy under various configurations.

For HL, HM, and HH workloads, the walk latency of the

tenants in the baseline (here, Tenant-2) jumps 5-6× over the

stand-alone walk latency for that tenant. The relatively less

page-walk-intensive tenant is starved of walkers due to the

uncontrolled interleaving of walks and resource contention by

other tenant. Under DWS, no tenant is starved of walkers and

the walk latency rationalizes. DWS’s partitioning of walkers

helps. At the same time, due to opportunistic stealing, walk

latency of relatively page-walk intensive does not increase by

the same margin, leading to overall throughput improvement.

As expected, DWS++ moderates the relative impact in walk

latency of the tenants in order to improve fairness. DWS
and DWS++ have limited impact on HH workloads though.

HH workloads are entirely resource-constrained. Unless more

hardware resources (TLBs, walkers) are employed, there is

little scope of improvement by reducing the interleaving alone.

We note that improvements due to DWS are limited when

neither of the applications stresses the TLB enough (i.e., both

applications in L or M category). This is expected; if there are

not many page walk requests generated by the applications,

then there is little scope for improvement. However, the

improvements are most significant when one of the applica-

tions has a high TLB miss rate (H-category). DWS’s smart

management of page walkers among the applications yield

high dividends in such cases. However, when both applications

thrash the TLBs, better resource management can do little to

help performance unless more hardware resources, i.e., large

TLBs and/or more walkers, are deployed.

Impact of stealing on TLB: We observe that by controlling

635

0.5
0.6
0.7
0.8
0.9

1

LL ML MM HL HM HH All

Gm
ea

n
of

fa

irn
es

s
Baseline DWS DWS++_conservative DWS++ DWS++_aggressive

(a) Controlling fairness with DWS++

0.5
0.8
1.1
1.4
1.7

LL ML MM HL HM HH All

Gm
ea

n
of

th

ro
ug

hp
ut

Baseline DWS DWS++_conservative DWS++ DWS++_aggressive

(b) Impact on throughput

Fig. 10: Balancing fairness and throughput with DWS++

TABLE VII: Parameters for DWS++ variants

Ratio of walks queued(R) DIFF THRES
Conservative DWS++ Aggressive

R <= 1.5 0.4 0.4 0.3
1.5 < R <= 2.0 0.6 0.6 0.3
2.0 < R <= 3.0 0.8 0.8 0.3
3.0 < R <= 4.0 0.9 0.9 0.3

4.0 < R No stealing No stealing 0.3

QUEUE THRES Conservative DWS++ Aggressive
0.17 0.51 0.51

the share of page walkers, DWS and DWS++ also impact the

share of L2 TLB capacity of each tenant. TLB entries are

filled with results of walks, and thus, if a tenant receives a

relatively more (less) share of walkers, it also gets a bigger

(smaller) share of TLB capacity.

Figure 9 captures this effect for the two representative

workloads (subfigures). We calculate the average fraction of

all walkers that are busy servicing walks for each tenant in a

workload and the average fraction of L2 TLB entries occupied

by each tenant. We plot these on the left and right y-axes

in subfigures, respectively. The left half of each subgraph

represents the baseline and the right half DWS. In each half,

there are four data points for TLB and page walker share

for each constituent tenant. We then join the data points for

corresponding page walker and TLB share in baseline and

DWS for ease of exposition. For both workloads, we observe

that as DWS alters the share of walkers that a tenant gets, it

also proportionally alters the share of TLB entries. This shows

that DWS is able to control the TLB share among tenants, as

well. The same is true for DWS++ too (not shown).

C. Balancing fairness and throughput with DWS++

A key feature of DWS++ is that it can balance throughput

and fairness by controlling the aggressiveness of stealing. By

altering the parameters of DWS++ (Table VII) we created two

more configurations. In one configuration stealing conservative

than the default (Table IV) and while the other steals more

aggressively. Figure 10a shows how fairness can be controlled

by these configurations. We observe that it is possible to

achieve better fairness through aggressive stealing. As ex-

pected, however, throughput drops slightly with aggressive

stealing (Figure 10b). We also note that for HH workloads,

0.6
0.8

1
1.2
1.4
1.6
1.8

LL ML MM HL HM HH All

Gm
ea

n
of

th

ro
ug

hp
ut

Baseline Static MASK DWS MASK+DWS

Fig. 11: Comparison with alternatives

the fairness of DWS and DWS++ are lower than the baseline.

Both tenants are page-walk intensive here and stealing by

walker of a page-walk intensive tenant hurts it more than the

improvement in other tenant’s performance.

D. Comparison with alternatives

We compare DWS with the naive static partitioning of

walkers and with a recent work called MASK [5]. The static

partitioning, like DWS, equally partitions the walkers amongst

the tenants, but it disallows stealing. A comparison with static

partitioning demonstrates the need for stealing. MASK, like

DWS and DWS++, aims to improve the GPU virtual memory

under multi-tenancy. However, it focuses on contention in the

L2 TLB and contention between data and page table entries

in the caches, unlike our work on addressing contention in the

walkers. MASK employs token-based flow control and utility-

based cache bypassing for PTEs. To simulate MASK, we used

the source code made available by the authors [3].

Figure 11 shows the throughput of baseline, static par-

titioning, MASK, DWS and MASK+DWS. Since MASK and

DWS are orthogonal, MASK+DWS employs both together. The

height of each bar is normalized to the baseline. We show the

measurements for each class of workloads only due to space

constraints. First, we observe that static partitioning degrades

performance over baseline. Thus, stealing is key. Second, DWS
outperforms MASK by 29%, on average. We note that MASK’s

improvement over baseline is muted compared to that in the

original article [5], although we used the author’s source code.

Our baseline, unlike in [5], includes a page walk cache and

larger L2 TLB (1024 vs. 512 entries). Importantly, authors

simulated unlimited number of walkers. We suspect that a

more realistic baseline limited the benefits of MASK. In short,

we demonstrate that DWS can work alongside MASK but may

not bring significant additional benefit over running alone.

E. Sensitivity studies

Figure 12 shows the sensitivity of DWS to changes in the

number of walkers and the L2 TLB capacity. There are two

clusters of bars for each workload class. In each cluster, there

are three bars representing a varying number of L2 TLB

entries (first cluster) and a varying number of walkers (second

cluster). The height of each bar represents the geometric

mean of the improvement of that class of workloads, over

the baseline with the same number of TLB entries or walkers

as specified in the legend. For example, the bar for 12 walkers

shows DWS’s improvement over baseline, both executed with

12 walkers. All other configurations remain unchanged.

636

0.6
1

1.4
1.8
2.2

LL ML MM HL HM HH All

512 entries 1024 entries 2048 entries
12 walkers 16 walkers 24 walkers
2048 entries + 24 walkers

Gm
ea

n
of

th

ro
ug

hp
ut

Fig. 12: Sensitivity of DWS to the number of page walkers

and the number of entries in the L2 TLB. Throughput

normalized to the corresponding baseline

0.5

1

1.5

2

Th
ro
ug

hp
ut

Baseline DWS DWS++

Fig. 13: Throughput with three and four tenants

As expected, with more walkers, the improvement from

DWS moderates, but still remains substantial, particularly for

HL and HM workloads. Similarly, a bigger TLB or both bigger

TLB and more PTW reduce improvements with DWS, but they

still remain substantial. The only exception is HH workloads.

There, the larger capacity reduces thrashing in TLB, making

DWS more effective. This is more prominent when both the

number of walkers and TLB size increases.

F. Scaling beyond two tenants

As discussed earlier, DWS and DWS++ are scalable beyond

two tenants. We simulated a few workloads with three and

four tenants. These simulations take very long to finish and are

impractical to run a large number of workloads. However, they

allow us to sample the scalability of DWS and DWS++. We

kept the TLB size same as baseline and slightly changed the

number of walkers to allow equal and non-fractional number

of walkers per tenant.

Figure 13 shows the throughput under baseline, DWS,

DWS++ for a few randomly selected combinations of tenants.

The height of each bar is normalized to the baseline. We

observe that DWS is able to provide significant increase in

throughput even with more than two concurrent tenants (up to

1.9× and more than 1.25× in 10 out of 14 workloads).

G. Performance of DWS with large pages

GPUs can support large page sizes such as 64KB and

2MB [36]. To demonstrate DWS’s usefulness even in the

presence of large pages, we simulated a few workloads with

enhanced memory footprint that ran for weeks. Figure 14

shows normalized throughput with DWS over baseline when

using 64KB pages. We observe that DWS improves perfor-

mance even in the presence of large pages. In general, DWS
enables a better utilization of hardware resources for address

translation, which is important even when large pages are used.

VIII. RELATED WORK

Jog et al. studied interference in the GPU memory under

multi-tenancy and proposed a memory scheduler that differ-

0.5

1

1.5

2

Th
ro
ug

hp
ut

Baseline DWS DWS++
2.702.70

Fig. 14: Effect of large pages on throughput

entiates among accesses from different tenants [27]. Prior

works explored how to execute multiple kernels concurrently

on a GPU to increase utilization [38], [47]. Researchers

also explored how to design and connect large multi-socket

GPUs [50], [32]. These works lay the foundation for designing

bigger GPUs but do not focus on the virtual memory.

GPU’s virtual memory under single-tenancy is studied

widely. Lowe-Power et al. demonstrated the importance of

coalescer, shared L2 TLB, and multiple page walkers [31].

These are part of our baseline. Pichai et al. proposed TLB-

aware warp scheduler to reduce TLB misses [40]. Vesely et al.

showed how memory access divergence can increase address

translation overheads [45]. Cong et al. proposed to use CPU’s

page walkers for GPUs [22]. Yoon et al. proposed the use of

virtual caches in the GPU to defer address translation [49].

This approach removes address translation from the critical

path but makes supporting multi-tenancy harder. Haria et

al. leveraged identity mapping between virtual and physical

memory to avoid page walking [23]. Shin et al. demonstrated

that reordering of address translation requests [42] and coa-

lescing of concurrent page walks can aid performance [43].

Ganguly et al. studied a tree-based prefetching mechanism for

unified virtual memory and the page eviction algorithm [20].

In Mosaic [4], Rachata et. al. explored the trade-offs between

large pages and overheads of demand paging. However, unlike

ours, these works do not explore multi-tenancy.

CPU’s virtual memory management is a well-researched

topic. Bhattacharjee et al. proposed inter-core cooperative TLB

prefetchers for multi-threaded workloads [13]. Pham et al.

utilized intermediate contiguity to map multiple pages using

a single TLB entry [39]. MIX TLBs showed how to efficiently

support multiple page sizes in a single TLB [16]. SpecTLB
predicts address mappings to hide the TLB miss latency [9].

Multiple proposals explored the use of segments to selectively

bypass page walks [10], [11], [12], [19], [29]. While lessons

from these works are useful, they are not directly applicable

to GPU.

IX. CONCLUSION

As GPUs seep into the cloud, multi-tenancy assumes im-

portance. We show that contention at the page walkers causes

performance loss in GPUs under multi tenancy. We proposed

DWS to employ walk stealing to reduce interference in page

walks from concurrent tenants while also ensuring high walker

utilization. DWS improve the throughput by over 37%, on

average. Further, by controlling the aggressiveness of stealing,

DWS++ can balance performance and fairness.

637

X. ACKNOWLEDGEMENT

We thank anonymous reviewers of HPCA 2021 for their

thoughtful review of this work. We thank Ashish Panwar, Ravi

S. Anupindi, and Shweta Pandey for their feedback on the

drafts of this article. This work is supported by Pratiksha Trust,

Bangalore, and by a research grant from VMware Inc..

REFERENCES

[1] AMD, “AMD MxGPU,” https://www.amd.com/en/graphics/workstation-
virtual-graphics.

[2] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa,
A. Jaleel, C.-J. Wu, and D. Nellans, “Mcm-gpu: Multi-chip-module
gpus for continued performance scalability,” in Proceedings of the
44th Annual International Symposium on Computer Architecture, ser.
ISCA ’17. New York, NY, USA: ACM, 2017, pp. 320–332. [Online].
Available: http://doi.acm.org/10.1145/3079856.3080231

[3] R. Ausavarungnirun, “Source code of MASK,” https://github.com/CMU-
SAFARI/Mosaic, 2018.

[4] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi,
C. J. Rossbach, and O. Mutlu, “Mosaic: A gpu memory manager
with application-transparent support for multiple page sizes,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-50 ’17. New York, NY, USA:
ACM, 2017, pp. 136–150. [Online]. Available: http://doi.acm.org/10.
1145/3123939.3123975

[5] R. Ausavarungnirun, V. Miller, J. Landgraf, S. Ghose, J. Gandhi, A. Jog,
C. J. Rossbach, and O. Mutlu, “Mask: Redesigning the gpu memory
hierarchy to support multi-application concurrency,” in Proceedings of
the Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’18.
New York, NY, USA: ACM, 2018, pp. 503–518. [Online]. Available:
http://doi.acm.org/10.1145/3173162.3173169

[6] A. AWS, “P3 instances with v100,” 2020. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/p3/

[7] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,” in 2009
IEEE International Symposium on Performance Analysis of Systems and
Software, April 2009, pp. 163–174.

[8] T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching: Skip,
don’t walk (the page table),” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, ser. ISCA ’10.
New York, NY, USA: ACM, 2010, pp. 48–59. [Online]. Available:
http://doi.acm.org/10.1145/1815961.1815970

[9] T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching: Skip,
don’t walk (the page table),” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, ser. ISCA ’10.
New York, NY, USA: ACM, 2010, pp. 48–59. [Online]. Available:
http://doi.acm.org/10.1145/1815961.1815970

[10] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture, ser. ISCA
’13. New York, NY, USA: ACM, 2013, pp. 237–248. [Online].
Available: http://doi.acm.org/10.1145/2485922.2485943

[11] Basu, Arkaprava, “Revisiting virtual memory,” 2013, http://research.cs.
wisc.edu/multifacet/theses/arka basu phd.pdf.

[12] Basu, Arkaprava and Hill, Mark D. amd Swift, Michael M., “Vir-
tual memory management system with reduced latency,” 2015, https:
//patents.google.com/patent/US9158704B2/en.

[13] A. Bhattacharjee and M. Martonosi, “Inter-core cooperative TLB for
chip multiprocessors,” in Proceedings of the Fifteenth Edition of
ASPLOS on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS XV. New York, NY, USA: ACM,
2010, pp. 359–370. [Online]. Available: http://doi.acm.org/10.1145/
1736020.1736060

[14] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime
system,” in Proceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPOPP ’95.
New York, NY, USA: ACM, 1995, pp. 207–216. [Online]. Available:
http://doi.acm.org/10.1145/209936.209958

[15] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Proceedings of the 2009 IEEE International Symposium
on Workload Characterization (IISWC), ser. IISWC ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 44–54. [Online].
Available: https://doi.org/10.1109/IISWC.2009.5306797

[16] G. Cox and A. Bhattacharjee, “Efficient address translation for
architectures with multiple page sizes,” in Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’17.
New York, NY, USA: ACM, 2017, pp. 435–448. [Online]. Available:
http://doi.acm.org/10.1145/3037697.3037704

[17] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous
computing (shoc) benchmark suite,” in Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units, ser.
GPGPU-3. New York, NY, USA: ACM, 2010, pp. 63–74. [Online].
Available: http://doi.acm.org/10.1145/1735688.1735702

[18] S. Eyerman and L. Eeckhout, “System-level performance metrics for
multiprogram workloads,” IEEE Micro, vol. 28, no. 3, pp. 42–53, 2008.

[19] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “Efficient memory
virtualization: Reducing dimensionality of nested page walks,” in
Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-47. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 178–189. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2014.37

[20] D. Ganguly, Z. Zhang, J. Yang, and R. Melhem, “Interplay between
hardware prefetcher and page eviction policy in cpu-gpu unified
virtual memory,” in Proceedings of the 46th International Symposium
on Computer Architecture, ser. ISCA ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 224–235. [Online].
Available: https://doi.org/10.1145/3307650.3322224

[21] Google, “Cloud gpus,” 2019. [Online]. Available: https://cloud.google.
com/gpu/

[22] Y. Hao, Z. Fang, G. Reinman, and J. Cong, “Supporting address trans-
lation for accelerator-centric architectures,” in 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA), Feb
2017, pp. 37–48.

[23] S. Haria, M. D. Hill, and M. M. Swift, “Devirtualizing memory
in heterogeneous systems,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’18. New York,
NY, USA: ACM, 2018, pp. 637–650. [Online]. Available: http:
//doi.acm.org/10.1145/3173162.3173194

[24] Intel, “Intel thread building blocks,” https://software.intel.com/en-us/tbb,
accessed: 2019-11-25.

[25] Intel, “Pci-sig sr-iov primer,” https://www.intel.com/content/www/us/en/
pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html.

[26] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and
J. Emer, “Adaptive insertion policies for managing shared caches,”
in Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’08. New
York, NY, USA: ACM, 2008, pp. 208–219. [Online]. Available:
http://doi.acm.org/10.1145/1454115.1454145

[27] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee,
S. W. Keckler, M. T. Kandemir, and C. R. Das, “Anatomy of gpu
memory system for multi-application execution,” in Proceedings of the
2015 International Symposium on Memory Systems, ser. MEMSYS ’15.
New York, NY, USA: ACM, 2015, pp. 223–234. [Online]. Available:
http://doi.acm.org/10.1145/2818950.2818979

[28] Jog, Adwait, “Design and analysis of scheduling techniques for through-
put processors,” 2015, https://etda.libraries.psu.edu/catalog/26480.

[29] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S.
McKinley, M. Nemirovsky, M. M. Swift, and O. Ünsal, “Redundant
memory mappings for fast access to large memories,” in Proceedings of
the 42Nd Annual International Symposium on Computer Architecture,
ser. ISCA ’15. New York, NY, USA: ACM, 2015, pp. 66–78. [Online].
Available: http://doi.acm.org/10.1145/2749469.2749471

[30] O. Kayiran, N. C. Nachiappan, A. Jog, R. Ausavarungnirun, M. T.
Kandemir, G. H. Loh, O. Mutlu, and C. R. Das, “Managing gpu
concurrency in heterogeneous architectures,” in Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-47. Washington, DC, USA: IEEE Computer Society, 2014, pp.
114–126. [Online]. Available: http://dx.doi.org/10.1109/MICRO.2014.62

638

[31] J. Lowe-Power, M. Hill, and D. Wood, “Supporting x86-64 address
translation for 100s of GPU lanes,” in Proceedings of International
Symposium on High-Performance Computer Architecture, ser. HPCA
’14, 02 2014, pp. 568–578.

[32] U. Milic, O. Villa, E. Bolotin, A. Arunkumar, E. Ebrahimi,
A. Jaleel, A. Ramirez, and D. Nellans, “Beyond the socket:
Numa-aware gpus,” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-50 ’17.
New York, NY, USA: ACM, 2017, pp. 123–135. [Online]. Available:
http://doi.acm.org/10.1145/3123939.3124534

[33] NVIDIA, “GPU-accelerated applications,” 2016, http://images.nvidia.
com/content/tesla/pdf/Apps-Catalog-March-2016.pdf.

[34] Nvidia, “Gpus everywhere,” 2019. [Online]. Available: https://blogs.
nvidia.com/blog/2017/05/08/microsoft-azure-gpu-instances/

[35] NVIDIA, “Nvidia multi-process service,” 2019, https://docs.nvidia.com/
deploy/pdf/CUDA Multi Process Service Overview.pdf.

[36] Nvidia, “Nvidia pascal mmu,” 2019, https://nvidia.github.io/open-gpu-
doc/pascal/gp100-mmu-format.pdf.

[37] NVIDIA, “Nvidia multi-instance gpu user guide,” 2020,
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html. [On-
line]. Available: https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
index.html

[38] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving gpgpu
concurrency with elastic kernels,” in Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS, 2013, pp. 407–418.

[39] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “CoLT: Coa-
lesced large-reach TLBs,” in 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, Dec 2012, pp. 258–269.

[40] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural support
for address translation on GPUs: Designing memory management
units for CPU/GPUs with unified address spaces,” in Proceedings
of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’14.
New York, NY, USA: ACM, 2014, pp. 743–758. [Online]. Available:
http://doi.acm.org/10.1145/2541940.2541942

[41] M. Shih, Y.-F. Chiu, Y.-C. Chen, and C.-F. Chang, “Real-time ray tracing
with cuda,” in Algorithms and Architectures for Parallel Processing,
A. Hua and S.-L. Chang, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 327–337.

[42] S. Shin, G. Cox, M. Oskin, G. H. Loh, Y. Solihin, A. Bhattacharjee, and
A. Basu, “Scheduling page table walks for irregular gpu applications,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), June 2018, pp. 180–192.

[43] S. Shin, M. LeBeane, Y. Solihin, and A. Basu, “Neighborhood-aware
address translation for irregular gpu applications,” in Proceedings of the
51st Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-51. Piscataway, NJ, USA: IEEE Press, 2018, pp. 352–363.
[Online]. Available: https://doi.org/10.1109/MICRO.2018.00036

[44] J. Stratton, C. Rodrigues, I. Sung, N. Obeid, L. Chang, N. Anssari,
G. Liu, and W. Hwu, “Parboil: A revised benchmark suite for scientific
and commercial throughput computing,” Center for Reliable and High-
Performance Computing, 2012.

[45] J. Vesely, A. Basu, M. Oskin, G. H. Loh, and A. Bhattacharjee,
“Observations and opportunities in architecting shared virtual memory
for heterogeneous systems,” in 2016 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), April 2016,
pp. 161–171.

[46] T. Vijayaraghavan, Y. Eckert, G. H. Loh, M. J. Schulte, M. Igna-
towski, B. M. Beckmann, W. C. Brantley, J. L. Greathouse, W. Huang,
A. Karunanithi, O. Kayiran, M. Meswani, I. Paul, M. Poremba,
S. Raasch, S. K. Reinhardt, G. Sadowski, and V. Sridharan, “Design and
analysis of an apu for exascale computing,” in 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA), Feb
2017, pp. 85–96.

[47] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo,
“Simultaneous multikernel: Fine-grained sharing of gpus,” IEEE
Comput. Archit. Lett., vol. 15, no. 2, pp. 113–116, Jul. 2016. [Online].
Available: https://doi.org/10.1109/LCA.2015.2477405

[48] Y. Xie and G. H. Loh, “Pipp: Promotion/insertion pseudo-partitioning
of multi-core shared caches,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture, ser. ISCA ’09.
New York, NY, USA: ACM, 2009, pp. 174–183. [Online]. Available:
http://doi.acm.org/10.1145/1555754.1555778

[49] H. Yoon, J. Lowe-Power, and G. S. Sohi, “Filtering translation
bandwidth with virtual caching,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’18. New York,
NY, USA: ACM, 2018, pp. 113–127. [Online]. Available: http:
//doi.acm.org/10.1145/3173162.3173195

[50] V. Young, A. Jaleel, E. Bolotin, E. Ebrahimi, D. Nellans, and O. Villa,
“Combining hw/sw mechanisms to improve numa performance of
multi-gpu systems,” in Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-51.
Piscataway, NJ, USA: IEEE Press, 2018, pp. 339–351. [Online].
Available: https://doi.org/10.1109/MICRO.2018.00035

639

